F(x)=-16x^2+56x+3

Simple and best practice solution for F(x)=-16x^2+56x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-16x^2+56x+3 equation:



(F)=-16F^2+56F+3
We move all terms to the left:
(F)-(-16F^2+56F+3)=0
We get rid of parentheses
16F^2-56F+F-3=0
We add all the numbers together, and all the variables
16F^2-55F-3=0
a = 16; b = -55; c = -3;
Δ = b2-4ac
Δ = -552-4·16·(-3)
Δ = 3217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-\sqrt{3217}}{2*16}=\frac{55-\sqrt{3217}}{32} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+\sqrt{3217}}{2*16}=\frac{55+\sqrt{3217}}{32} $

See similar equations:

| 4((9-x)=20 | | -3=-r+11/5 | | (8-3r)5/26= | | (8-3r)516= | | -5q+10q=50 | | 5(k+2)-3=2(k+5) | | .6a=3.6 | | 73+(4x-1)+(6x+8)=180 | | -6a+3a=-33 | | 3z-8=22 | | 8+p/2=-2 | | 0.05b+0.25=0.2 | | 5(k+2)-4=2(k+5) | | 2p+7=6p+3 | | 4x1= | | -5d+6d=-7 | | −14=−2(n−6) | | 3z-8=-22 | | 55+(x+1)+x=180 | | 5(6+x)=-25 | | 1/b+3=2 | | 3x-8-x=20 | | -2r+11-8r=-29 | | -1=-x-6/2 | | 8n+816.2=1.6 | | 64+90+(9x-64)=180 | | -10n+24+24n=-6n-16 | | 112=-2(-6x-8) | | 2+(y−2.25)2=169/169 | | 5x-8=6x-13 | | 4=-4(z-7) | | 4(x-3)+7=43 |

Equations solver categories